Parametric amplification of magnetoplasmons in semiconductor quantum dots
نویسندگان
چکیده
منابع مشابه
Semiconductor Quantum Dots
The “Standard Model” of the Electronic Structure of Dots Progress made in the growth of “freestanding” (e.g., colloidal) quantum dotslt2 (see also articles in this issue by Nozik and MiCi6, and by Alivisatos) and in the growth of semiconductor-embedded (“self-assembled”) dots3p4 (see also the article by Bimberg, Grundmann, and Ledentsov in this issue) has opened the door to new and exciting spe...
متن کاملMagnetic Semiconductor Quantum Dots
Cdo.5Mno.5S diluted magnetic semiconductor (DMS) quantum dots (QDs) of crystallite size ranging from 24 A to the bulk have been chemically synthesized using an aqueous solution precipitation method and thermal annealing. Subsequent characterization indicates that the "as prepared" material is of the cubic zinc blende structure which evolves with increasing size to the bulk hexagonal wurtzite st...
متن کاملParametric polariton amplification in semiconductor microcavities.
We present novel experimental results demonstrating the coherence properties of the nonlinear emission from semiconductor microcavities in the strong coupling regime, recently interpreted by parametric polariton four-wave mixing. We use a geometry corresponding to degenerate four-wave mixing. In addition to the predicted threshold dependence of the emission on the pump power and spectral bluesh...
متن کاملCavity quantum electrodynamics with semiconductor quantum dots
Cavity quantum electrodynamics with semiconductor quantum dots Pascale Senellart CNRS, Laboratoire de Photonique et de Nanostructures, Marcoussis, France Many quantum devices can be implemented by controlling the spontaneous emission of a semiconductor quantum dots in a microcavity: bright sources of quantum light, delayed photon entangler, optical quantum gates... In this talk, I will present ...
متن کاملMagnetoplasmons in quantum rings
We have studied the structure and dipole charge density response of nanorings as a function of the magnetic field using local-spin density functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of a narrow and a wide ring. The results are qualitatively compared with experimental data existing on microrings...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.84.125441